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Direct Transformation of Variational Problems
Into Cauchy Systems. II. Scalar-Semi-Quadratic Case

James Hess, Harriet Kagiwada and Robert Kalaba2
October 1977

Abstract. This series of papers addresses three interrelated problems:

The solution of a variational problem, the sol ution of integral equations,

and the solution of an initial valued system of integrodifferential equa-

tions. It will be shown that a large class of variational problems requires

the solution of a non-linear integral equations. It has also been shown

that the solution of a non-linear Integral equation Is identical to the

solution of a Cauchy system. In this paper, we by-pass the non-linear in-

tegral equations and show that the minimi zation problems directly implies a

solution of the Cauchy system. This second paper in the series look at

semi-quadratic functional and scalar functions.

Xeywords. Variational problems, integral equations , parametric imbedding.

1. Introduction

Many optimi zation problems result In variational problems of finding

a function z(t), 0< t< 1, that minimizes the functional

W[z] = x 4 4 z(s)k(t,s)z(t)dtds + 2 4 F(~(t),t)dt.
By standard variational techniques It can be shown that the optimal function,

u(t), satisfies a non-linear Fredhoim Integra l equation (Ref. 1). Recent 0

work In the study of Integral equations (Ref. 2) has shown that solutions

of non-l inear Integral equations are requlvalent to solutions of particular 
~~~Jj
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initial valued systems of integrodifferential equations (Cauchy Systems).

It appears that the three problems -- variational , integral equations,

and Cauchy Systems -- are equivalent to each other. An Important missing

link In the analysis has been the demonstration that the variational problem

leads directly to a Cauchy System without passing through an Integral equa-

tion. These papers provide that link.

2. ~ rivation

Suppose we desire to find a scalar function z~t), 0< t< 1 , which

minimizes the semi-quadratic functional

W[z ,x) = A 4 4 z(s)k(t,s)z(t)dsdt + 2 4 F(z(t),t)dt, (1)

where k (t s) Is a syiiinetric, positive definite Kernel , F( z ,t) is a convex,
twice differentiable function in 2, and A is a sufficiently small scalar

parameter. This class 0f problems is semi-quadratic because the first term

Is a quadratic functional in z. This is more general than it might look at

first glance, for the choice variabl e may actually be a function (x(t) and

Z(t) might be a composite function.

z(t) = h(x(t)) (2)

where h is a convex, differentiable function. By simple change of varia-

bles this more general problem may be reduced to (1). The standard varia-

tional approach to this problem results in a non-linear Integral equation

which the optimal function must satisfy.

I
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Proposition 2.1. The function u(t) which minimizes W [z;A] must

satisfy the integral equation

F1(u(t),t) + 

~ 4 k (t,s)u ( s) ds = 0, 0< t ~ 1. (3)

Throughout the paper, the partial derivative Of F with respect to its ith

argument is denoted by F1 and the derivative of u(t,A) with respect to A

is denoted by UA (t,A).

The proposition Is established as follows. The arbitrary admissible

functions may be written as

z(t) = u(t) + cn(t), (4)

where ~ is an arbitrary scalar, and r~(t) Is an arbitrary function. Take a

Taylor ser ies expans ion of W[Z,A] in c, Ignoring all terms in £2 or higher.

This results in

W[z ,A] = W [u,A] + EC [U ,fl,A] (5)

where

C[U,n,A] = A 4 4 k(t,s)u ( s)~(t)dsdt + A 4 4 u(t)k(t,s)n(s)dsdt
+ 2 4 F1(u(t),t)~(t)dt. (6)

Optimal ity requires

tC[U,i1,A ] > o ( 7s)

For all ~,n. Since £ has arbitrary sign, this Implies

Cfu ,n,AJ 0. (8)

____________________________________________________________ — ..S~~~~



- -~~~~--- _ _- - - -~~~~ —~~-—~~ - - -
~~~~~~~ S-- .-- ---- ~~~~ - -- - ~~~

4

Using the synmietry of k(t,s), variables of Integration may be relabeled so

that Eq. (8) is expressed as

A 4 4 k(t ,s)u(s)n(t)dsdt + 4 F1(u(t),t)ti(t)dt = 0 (9)

for all arbitrary ri(t). Applying the fundamental lema of the calculus of

variations to Eq. (9) results in the desired integral equation. This completes

the proof.

Another approach to the minimization problem is to ask how the optimal

solution changes as A varies. This is referred to as parametric imbeddi~g.~

The basic idea of parametric imbedding is to convert the non-linear integral

equation into a system of initial valued integro-differential equations. The

basic result given in Ref. 2 is

Proposition 2.2. The function u(t,A) which satisfies the non-

linear integral Eq. (3) parameterized by A is the soluLion to

the followi ng initial valued integrodifferential equations,.

au~nented by a resolvent kernel K(t ,s A), and conversely:

UA (t,A) + cs(t,A) + A 4 K(t,S,A)cs(S,A)dS 0 (10)

KA (t.s~
A) + 8(t,s,A) + 4 K(t,s’,X)6(s~,s,A)dS’ = 0 (11)

F1(u,(t,0),t) 
= 0 (12)

K(t,s,O) + k(t,s) /F11(u(t,O) , t) = 0 (13)

where

~(t,x) 4 k(t,s)u (s ,x)ds/F1~(u(t,x),t) (14)
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6(t,s,A) = ~(t,s,A ) + 4 k(t,s1 )K(s 1 ,s,A)/F11 (u(t,x),t)ds1

+ A 4 y(t,S1 ,A)K(51 ,s,A)dS1 (15)

y(t,s,A) = ~ -(k(t,s)/F11 (u(t,A),t)) (16)

For 0< t < 1 , 0< S < 1.

The Cauchy System (lO)-(16) has been very useful for the computation of

solutions of non-l inear integral equations, whether or not they ar ise from a

variational problem. Well-known techniques , such as the Runge-Kutta or

Adams-Moulton methods, together with the methods of lines , are readily avail-

able. See Ref. 3 for one such example. In addition, there are many cases

where the parameter A has an interesting physical interpretation and thus

the Cauchy System provides all the equations needed to study the sensitivity

of the solution to changes in important parameters

It will now be shown that the Cauchy System (lO)-(16) may be derived

directly from the semi-quadratic minimi zation problem without ever writing

down the non-linear integral Eq. (3). This shows that the solution of the

variational problem could have proceeded even if the -Integral equation had

never been discovered. The Cauchy System is perfectly adequate for describ-

Ing the optimal function u(t,A).

PropositIon 2.3. The function u(t A ) which minimizes W[U,A] must

satisfy the Cauchy System (10)-(l6).

The proposition is established as follows. Let u(t,A ) be the solution

of the minim ization problem for parameter value A , and let u(t,A+dx) be the
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solution for A+dA . Admissibl e solutions to the variational problem may be

expressed as

z(t ,A) = u(t,A) + cn(t), (17)

x(t,A+dX) = u(t,A+dA) + ap(t), (18)

where e and a are arbitrary scalars and where n and p are arbitrary functions.

Approximate W[z,A] and W[x, A+dA] by a Taylor series in the first argument.

When c and a are suitably small the terms in ~2 and a2 or higher may be

ignored. The resulting approximations are

W(z,A] ~ W[u ,A] + cC[u,n,A] + higher order terms (19)

W(x ,A+dAJ ~ W[u,A+dA) + aC[u ,p,A+dA] + higher order terms (20)

where

C[u,~,A] = 2 A 4 4 k(t,S)u(S,A )~(t)dsd t
+ 2 4 F1(U(t,A),t)~(t)dt (21)

C[u,p,A+dA] = 2~~+dA ) 4 4 k(t,s)u(S,A+dA)p (t)dSdt
+ 2 4 F1 (u ( t,A+dx),t)p(t)dt (22)

If u(t,A) and u(t,A+dA) are optimal , then it must be true that

£ C(u ,n,A] > 0 (23)

a C(u,p,A+dA] > 0 (24)

. . 
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for all c,a,n,p. Since these are arbitrary, select c = -a and r~ p sO
- 

that (23) and (24) are 
-

-aC[u,p,X) > 0, (25)

aC[u,p,A+dA] > 0. (26)

Add these two inequalIties to get

o(C[u,p,A+dA] - C[u,p,A)) > 0. (27)

Since a has arbitrary sign, this imp lies that

C[U,p,A+dA] — C[U,p,A] = 0, (28)

for all arbitrary p. Expand C[u,p,A+dA] in a Taylor series in A+dA ; ignoring

terms with (dx)2 or higher this gives

C[u,p,A+dA] ~ C[u,p,A] + dA {2 4 4 k(t,s)u(5,A)p (t)dsdt
+ 2x 4 4 k(t,s)UA (sIx)p(t)dsdt
+ 2 4 F11(u(t,A),t)U~(t ,A)p(t)dt.} (29)

Hence for dA sufficiently small , Eqs. (28) and (29) imply that the term in

brackets in Eq. (29) must be zero for all arbitrary p(t). Apply the funda-

mental lema of the calcul us of variations and we have

F (u(t,x),t)ux (t,A) + ~1 k(t ,S)U(S,A)dS

+ x 4 k(t ,s)u A (s ,x)ds = 0. (30)
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Divide Eq. (30) by F11(u(t,x),t) and we have the l inear Fredholm integral

equation in the unknown function uA(t,x)

u
~
(t,A) + ct(t,A ) + A 4 m(t,s,x) uA (s,x)ds = 0, (31)

where a(t,A ) is defined In Eq. (14) and m(t,s,A ) is defined by

m(t,s,A) = k(t,s)/F11 (u(t ,A),t) (32)

A l inear Fredhoim integral equation with kernel m(t,s,A ) has a solution

that may be expressed using a resolvent kernel K(t,s,A ) as follows

uA (t,A) + a(t,A) + A 4 K(t ,s,A)~ (s ,X )ds = 0. (33)

This Is Eq. (10) of the Cauchy System. The resolvent kernel must satisfy

a related linear Fredholm integral equation (see Ref. 2),

K(t,s,A) + m (t,s,A) + A f1~ m(t,s’,A )K(s ’,s,x)ds’ 0. (34)

Differentiate (34) with respect to A to get

KA (t,s,A) + y(t,s,A ) +
‘ 4 m(t,s ,x)K(s’,s,x)ds’

+ A ~ y(t,s’,A )K( s ’,s,A)ds’

+ A 4 m(t ,s’,A)K
~

(s ’,s,A)ds’ = 0, (35)

where ~(t,s,A ) Is defined In Eq. (16). Since Eq. (35) is also a linear

Fredholm integral equation with a kernel m(t,s’,A), Its solution may be

expressed using the same resolvent kernel .

S.
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K
~
(t,s,A) + 6(t,s,A ) + 4 K(t,s’,A )&(s 4 1s,A)ds’ = 0 (36)

where 6(t,s,x) is defined in Eq. (15). This is Eq. (11) of the Cauchy

system. When A = 0 in the original minimi zation problem, W[u(t,O),O]

is minimi zed when F(u(t,0),t) is minimized for each t. This implies

that

F1(u(t,0),t) 
= 0 (37)

which is the initial condition (12). The initial condition (13) follows

from Eq. (34) by setting A = 0. This compl etes the proof.

3. Discussion

The objective of this paper has been to reduce the semi-quadratic

variational problem in Eq. (1) to the Cauchy System in relations (lO)-(16).

In particular we have been abl e to do this without making any use of the

Euler equation, which takes the form of the non-linear integral equation (3).

The earlier paper in this series (Ref. 4) demonstrated that the

reduction could be performed in the quadratic case. In this paper, the

general technique of direct reduction is made more explicit. The objective

functional is approximated first in a Taylor series in the choice function

and then in a Taylor series in the parameter A. It woul d have been possibl e

to derive the non—linear integral equation along the way but this was not

done in order to arrive the sensitivity Eqs. (1O)-(l6). This general tech-

nIque may be applied to problems which are not semi-quadratic and which

have a vector of choice functions. This i.~proach may be used to develop

new equations for such variational problems as the team decision problem,

Ref. 5, or the simpl est problem In the calculus of variations.
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